GeneWatch UK comments on an application for the placing on the market of food, feed and other products containing or consisting of genetically modified dicamba and glyphosate tolerant soybean MON 87705 x MON 89788 and food and feed produced from this soybean

August 2015

The EFSA GMO Panel previously assessed the two single events combined to produce soybean MON 87705 x MON 89788 and did not identify safety concerns. Here it concludes that soybean MON 87705 x MON 89788 is as safe as its comparator and non-GM soybean reference varieties with respect to potential effects on human and animal health and the environment.

The product is described as an herbicide-tolerant, increased oleic acid genetically modified (GM) soybean. The two-event stack soybean MON 87705 x MON 89788 was produced by conventional crossing to produce soybean tolerant to glyphosate-based herbicides and having an altered fatty acid profile. Two soybean single events were crossed: MON 87705 (expressing CP4 EPSPS, i.e. tolerance to glyphosate or a “RoundUp Ready” trait, and having an altered fatty acid profile) and MON 89788 (expressing CP4 EPSPS i.e. a further “RoundUp Ready” trait).

GeneWatch UK has previously objected to the authorisation MON87705 and has lodged a formal complaint against its authorisation.

3. Comments

a. Assessment:

Molecular characterisation


Comparative analysis (for compositional analysis and agronomic traits and GM phenotype)

Environment and gene-environment interactions (GxE) are known to have important effects on nutrient (including fatty acid) composition of soybeans (Whent M, Hao J, Slavin M, et al. Effect of Genotype, Environment, and Their Interaction on Chemical Composition and Antioxidant Properties of Low-Linolenic Soybeans Grown in Maryland. J Agric Food Chem. 2009;57(21):10163–10174) and such effects can vary at different developmental stages (Han Y, Xie D, Teng W, Zhang S, Chang W, Li W. Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed. Theor Appl Genet. 2011;122(8):1481–1488). It is therefore essential that data is obtained from a wide variety of agronomic conditions, representative of expected growing conditions. The field trials were performed at nine separate sites within the soybean cultivation areas of the USA. Eight of
the nine sites were used for the agronomic and phenotypic comparison, and eight were used for comparative compositional studies of soybean seed and forage. Seven of the nine field trials were used for both compositional and agronomic/phenotypic analysis. It is questionable whether this data set is sufficient to establish variability of nutrient levels between different sites and growing conditions. More data should be requested from the applicant, particularly in relation to studies on the effect of food processing on nutrient profiles.

b. Food Safety Assessment:

Toxicology

EFSA should have published detailed Guidance on the assessment of nutritionally-altered crops.

The animal studies provided are inadequate to support the conclusions made by EFSA. In the rat study reported for the single event (EFSA 2012 Scientific Opinion on MON 87705), no soybean oil from MON87705 was tested, only defatted soybean meal and hence the only conclusion that was drawn by EFSA referred to defatted soybean meal. The same problem occurs with the chicken study reported here for the stacked event, which again uses toasted defatted soybean meals. This is a critical omission because the soybean oil is the main product intended to be fed to humans. It is hard to understand how EFSA can reach any conclusion on the safety of the product, and particularly its altered nutritional profile, if no studies are conducted! New animal feeding studies should be requested from the applicant which test all the food products (including oil and whole soybeans) which fall within the scope of the application and which include endpoints relevant to the assessment of the safety of nutrient profile of the oil.


Allergenicity

Nutritional assessment

There is no nutritional assessment as such included in the scientific assessment for the single event MON 87705 or the stacked event MON 87705 × MON 89788 and the EFSA GM Panel appears to be relying solely on The EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)’s 2010 report on Dietary Reference Values for fatty acids. This serious omission has perhaps occurred because there are no nutritionists on the GMO Panel (although one expert from the NDA has acted as a hearing expert) which means the panel lacks the relevant expertise to conduct a nutritional assessment.

EFSA has also failed to publish any Guidance on the assessment of nutritionally altered crops.

GeneWatch UK considers the lack of any proper nutritional assessment to be a serious omission. Combined with the lack of adequate labelling (see below) it means that in practice, consumers will have no idea about the nutrient content of the foods they are consuming. Potentially serious safety
issues could be missed and there is no clear mechanism for recall of products if (as is common in the nutrition literature) new studies identify unexpected adverse effects or confirm adverse effects that are currently uncertain, some of which may impact the health of specific subpopulations.

Serious limitations on compositional information (nutrient profiles) also exist. In addition, no data has been provided for different age groups, needed to assess risk to specific subgroups of consumers. Some such information (including intakes for toddlers, children, teenagers, adults and the elderly, before and after the substitution of foods containing the GM soybean oil) was provided in the EFSA’s statement complimenting its scientific opinion for Pioneer’s GM soybean 305423. The lack of any such data here raises questions about consistency and the need for a level playing field. The applicant should be required to supply this information as it is essential to underpin any nutritional assessment.

Use of the NDA Dietary Reference Values (DRVs) is inadequate for a number of reasons including: (i) the report is out of date and more recent studies must be included in the scientific assessment of soybean MON 87705 × MON 89788; (ii) it does not consider population subgroups who may be particularly affected by changes in the fatty acid profile of their food; (iii) it is not applicable to GMO foods which require a safety assessment under Regulation (EC) No. 1829/2003. This requires a scientific evaluation of the highest possible standard (conducted by EFSA) followed by a risk management decision by the Community.

The introduction of GM soybean oil with altered nutritional properties onto the EU market is a decision which is the responsibility of EU institutions, not merely a recommendation (as DRVs are) to individuals about what foods to consume. GM foods placed on the market in the EU must not have adverse effects on human health or be nutritionally disadvantageous for the consumer (EC 1829/2003 Article 4(1)) and no authorisation can be granted unless the applicant has adequately and sufficiently demonstrated this. A full nutritional assessment is therefore required by EFSA. This should not have been omitted. Prior Guidance on the assessment of nutritionally altered crops should have been published by EFSA.

It is startling that there are no references to any of the extensive literature on nutrition in the scientific assessment. The starting point of any nutritional assessment must be a comprehensive literature review. Since nutrition studies rarely provide definitive conclusions, there is a need to weigh up the evidence taking into account the need for a precautionary approach. This is because new studies can support or reverse previously held views and the ability of consumers to avoid products based on new evidence (or retailers to withdraw them or manufacturers to change formulations) is much lower in the case of an oil likely to be used in multiple products than it is for supplements (which people can simply choose not to buy). The applicant should be required to provide a systematic review of studies published in the scientific literature and to submit new studies without delay should they arise during the course of consideration of the application. Without such a review hazard identification and hazard characterisation are likely to be incomplete and risk characterisation cannot be completed.

It is impossible to fill the important gap left by the lack of nutritional assessment in these short comments, but examples of studies that should be considered include:

• Studies suggesting a link between MUFAs and poor memory function (Gibson EL, Barr S, Jeanes YM. Habitual fat intake predicts memory function in younger women. Front Hum Neurosci. 2013;7:838).
• Studies suggesting beneficial effects from high intake of linolenic acid (which is reduced in soybean MON87705) (e.g. Djoussé L, Hunt SC, Arnett DK, Province MA, Eckfeldt JH, Ellison RC. Dietary linolenic acid is inversely associated with plasma triacylglycerol: the National Heart, Lung, and Blood Institute Family Heart Study. Am J Clin Nutr. 2003;78(6):1098–1102).

The nutritional assessment must also consider the outcomes of animal feeding studies but this is impossible without further information from the applicant because: (i) (as noted above) the rat feeding study supplied for the single event did not include soybean oil from soybean MON87705 nor did the chicken study added here; (ii) foods utilising the GMO (as opposed to the GMO itself) were not included in any animal feeding study so no data of relevance to human consumption of these foods was obtained; (iii) appropriate endpoints were not considered. Further feeding studies are therefore necessary to consider the nutritional impacts of all the food products intended for human consumption that are included within the scope of the application.

Although animal feeding studies are required as a first step, credible evidence of relative benefits and harms associated with the substantially altered fatty acid profile and other nutrient changes in soybean MON 87705 × MON 89788 in terms of endpoints such as cardiovascular or cancer risk may only be obtained by conducting large-scale long-term clinical trials in humans. Relevant studies of this type should therefore also be provided.


There are many gaps in the literature, leading to a lack of understanding, for example, of the implications of altering fatty acid profiles in foods for babies and young children. As noted above, no data has been supplied on estimated daily intakes for toddlers, children, teenagers, adults and the elderly, making a safety assessment for such groups impossible. In addition, no data on bioavailability or the nutritional status of different subgroups likely to consume the food has been provided. This data should be requested from the applicant.

EFSA Guidance and Codex Guidelines require population subgroups to be considered in the nutritional assessment. As well as categories by age, this should include other subgroups whose nutrient requirements may be different from the general population. Again, this work has been totally omitted. It is impossible to completely fill this gap in these short comments, however there are a number of monogenic disorders, for example in the category of Fatty Acid Metabolism Disorders (MCAD, LCAD and SCAD deficiencies) in which medium-chain triglycerides (MCTs) can’t be broken down and linoleic acid deficiency may occur (Acosta PB: http://www.fodsupport.org/pdf/Nutrition_and_Fatty_Oxidation_Defects.pdf ) and others, such as
Waldmann’s disease, which require MCT supplementation (Vignes S, Bellanger J. Primary intestinal lymphangiectasia (Waldmann’s disease). Orphanet Journal of Rare Diseases. 2008;3(1):5. doi:10.1186/1750-1172-3-5). Patients with Refsum’s Disease are advised to eat soya products based on the level of phytanic acid they contain (http://www.refsumdisease.org/patients/dietwhichfoods.shtml ) and patients with propionic academia are also unable to process certain lipids (http://ghr.nlm.nih.gov/condition/propionic-acidemia ). The implications of altering fatty acid profiles in soybean oil should have been considered for such groups.

Finally, as noted above, the potential for soybean MON 87705 × MON 89788 to be fed to animals as a supplement (i.e. as oil or seeds, not solely as defatted meal) and alter the nutrient profiles of meat, milk or eggs has yet to be considered. Additional data is required from the applicant to consider this scenario.

In GeneWatch’s view the existing literature suggests that it is extremely questionable whether soybean MON 87705 × MON 89788 should be allowed on the market, particularly when the options for recall or consumer avoidance may be difficult (see comments on labelling below).

Others

No analysis was provided of the fatty acid of the final products for which the applicant is seeking approval (e.g. salad dressings and margarines, or products fried in the oil). Nor was any data supplied on bioavailability and bioefficacy taking onto account the potential influences of transport, storage and expected treatments of the food. More data should be requested from the applicant if the food safety assessment is to be meaningful.

The applicant has applied for an authorisation which covers the GMO and foods containing it. Nutritional composition has not been supplied for all the relevant foods containing the GMO. This means that no assessment can be conducted for such foods and no authorisation can be granted. Data on the nutrient (and anti-nutrient) composition of all the foods within the scope of the application (salad dressings, margarines, cooking oils, salty snacks, tofu, soymilk etc.) must be provided by the applicant as well as for secondary products such as soy lecithin.

Nutrient (and anti-nutrient) composition is also required for meat, milk and eggs from animals fed on soybean MON 87705 × MON 89788. The scientific assessment incorrectly implies that the soybean oil will be largely for human consumption, whilst defatted soybean meal will be fed to animals. Whilst this is indeed normal practice in the industry, the addition of GM soybean oil or seeds to animal feed is an active topic of research, with the aim of altering milk fat composition (Bernal-Santos G, O'Donnell AM, Vicini JL, Hartnell GF, Bauman DE. Hot topic: Enhancing omega-3 fatty acids in milk fat of dairy cows by using stearidonic acid-enriched soybean oil from genetically modified soybeans. J Dairy Sci. 2010;93(1):32–37. doi:10.3168/jds.2009-2711) as has already been attempted using supplements (e.g. Glasser F, Ferlay A, Chilliard Y. Oilseed lipid supplements and fatty acid composition of cow milk: a meta-analysis. J Dairy Sci. 2008;91(12):4687–4703). Since potential food and feed applications have not been restricted, this application should fall within the scope of the assessment. Further, it is likely that a similar approach could be applied to meat and eggs where diet is known to affect fat composition (e.g. Berthelot V, Bas P, Schmidely P. Utilization of extruded linseed to modify fatty composition of intensively-reared lamb meat: effect of associated cereals (wheat vs. corn) and linoleic acid content of the diet. Meat Sci. 2010;84(1):114–124.; Oliveira DM, Ladeira MM, Chizzotti ML, et al. Fatty acid profile and qualitative characteristics of meat from zebu steers fed with different oilseeds. J Anim Sci. 2011;89(8):2546–2555). Additional
data should be requested from the application to cover these scenarios, to underpin a revised nutritional assessment.

Since the application covers the authorisation covers the GMO and its use in assorted foods, consumption of all of these foods must be monitored as part of the post-market monitoring. Effects on health should also be monitored but it is impossible to specify monitoring requirements in the absence of a nutritional assessment (as noted above).

3. Environmental risk assessment

4. Conclusions and recommendations

The risk assessment is incomplete and inadequate to support approval of the product.

5. Others

6. Labelling proposal

The labelling proposal “genetically modified soybean containing increased oleic acid oil” or “increased oleic acid oil produced from genetically modified soybean” is inadequate. Numerous GM soybeans with altered fatty acid profiles are in the GM industry pipeline with a wide variety of properties (http://www.soyconnection.com/sites/default/files/Biotech_PipelineCharts.pdf) and Wilson RF. The role of genomics and biotechnology in achieving global food security for high-oleic vegetable oil. J Oleo Sci. 2012;61(7):357–367). These products all have different fatty acid profiles and molecular characterisations (see for example the EFSA Scientific Opinion on soybean 305423) and several could be described as containing “increased oleic acid” despite having substantially different fatty acid profiles (and in some cases other altered nutrients). It is essential that consumers and medical professionals are provided with more information on the label (i.e. a list of all fatty acids and other nutrients that are significantly increased or decreased) and the means to find more detailed information should this become necessary (i.e. the Unique Identifier). This is essential because:

1. New information may become available in future about unexpected harms associated with the particular method of genetic modification or molecular characterisation (e.g. stability of a particular construct or off-target effects) which is only traceable via the Unique Identifier.
2. New information may become available regarding specific harms associated with specific types of fatty acid (e.g. confirming the reported association between MUFAs and breast cancer) which may lead to (some or all) consumers wishing to avoid some altered oil products but not others and/or retailers/manufacturers to withdraw some products. This can only be done if the fatty acid profile of each product is known and its source is traceable.
3. Small subgroups of consumers (e.g. suffering from a particular metabolic disorder) may find health problems are caused by some fatty acid profiles but not others. They may therefore wish (or need) to avoid specific fatty acids or groups of fatty acids.

Any of these situations may necessitate withdrawal of products and/or consumer information to be issued regarding specific products (allowing specific subgroups of persons to avoid them). This can only be done if the fatty acid profile and its source is known to the consumer (and in some cases can be discussed with a medical professional) via information on its label.

Regulation (EC) 1829/2003 Preamble (22) states:
“In addition, the labelling should give information about any characteristic or property which renders a food or feed different from its conventional counterpart with respect to composition, nutritional value or nutritional effects, intended use of the food or feed and health implications for certain sections of the population, as well as any characteristic or property which gives rise to ethical or religious concerns”.

The proposed labelling does not conform to these requirements. A new proposal is therefore needed.

Although not currently provided for in the legislation, labelling of meat, milk and dairy products from animals fed on soybean MON 87705 × MON 89788 as feed is also necessary, because the use the potential use of whole soybeans or soybean oil as dietary supplements can significantly alter the fatty acid profile of these products.